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Highlights  Abstract  

▪ The realistic degradation trajectories are 

generated based on the single exponential 

model and Sobol sampling. 

▪ The Pearson distance is used to assess the 

similarity between the predicted reference 

trajectory and the actual trajectory. 

▪ Based on similarity measures and kernel 

density estimation, point estimation and 

uncertainty estimation of RUL are realized. 

 Lithium-ion batteries find extensive application in transportation, energy 

storage, and various other fields. However, gathering a significant 

volume of degradation data for the same type of lithium-ion battery 

devices becomes challenging in practice due to variations in battery 

operating conditions and electrochemical properties, among other 

factors. In this small sample situation, accurately predicting the 

remaining useful life (RUL) of the battery holds great significance. This 

paper presents a RUL prediction method that is based on data 

augmentation and similarity measures. Firstly, by utilizing the single 

exponential model and Sobol sampling techniques, it is possible to 

generate realistic degradation trajectories, even with just one complete 

run-to-failure degradation dataset. Subsequently, the similarity between 

the generated prediction reference trajectories and actual degradation 

trajectories is evaluated using the Pearson distance. Following that, the 

point estimation of RUL is performed through weighted averaging. 

Then, the uncertainty of the RUL predictions is quantified using kernel 

density estimation. Finally, the effectiveness of the proposed RUL 

prediction method is validated using two NASA lithium-ion battery 

datasets. Results demonstrate the practicality and effectiveness of the 

proposed method. 
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1. Introduction 

The sustainable development of the global transportation 

industry, energy storage industry, and other fields faces 

significant challenges due to energy shortages, climate change, 

and pollutant emissions 4. As a result, there is an urgent need 

for researchers to conduct comprehensive studies on innovative 

forms of energy storage. Lithium-ion batteries, compared to 

other forms of energy storage, are portable energy sources with 

high energy density, environmental friendliness, and long cycle 

life. As a result, they have found extensive applications in 

various domains, including new energy vehicles, unmanned 

aerial vehicles, high-speed trains, and portable electronic 

devices [13,32]. For example, the development of electric 

vehicles is inseparable from the continuous improvement of the 

performance of on-board lithium-ion power batteries 37. 

However, as the number of charges and discharges increases, 

the performance of the battery gradually deteriorates. This 
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phenomenon is commonly referred to as battery aging 6. Battery 

aging not only results in economic losses but also poses risks 

such as fire, explosion, and other catastrophic accidents, 

seriously impacting the safety of individuals and their property. 

To prevent these disasters, it is crucial to promptly monitor the 

health status of lithium-ion batteries and conduct research on 

predicting their remaining useful life (RUL). 

The prediction of RUL for lithium-ion batteries is at the 

heart of battery health management and operation and 

maintenance systems. This approach utilizes existing 

degradation data to estimate a reasonable failure time, which 

plays a crucial role in ensuring the safe and efficient operation 

of batteries 16. Presently, RUL prediction algorithms for 

lithium-ion batteries can be broadly classified into two types: 

model-based and data-driven approaches 14. 

The model-based approach is based on the equivalent circuit 

model 25 and electrochemical model 17 of lithium-ion batteries 

for prediction. However, such methods require professional 

technical support and strict experimental conditions, which 

makes these RUL prediction methods less popular due to the 

complexity of the methods 26. 

The data-driven approach is the most commonly utilized 

method for predicting battery RUL. This method does not rely 

on a specific physical model as it directly employs degradation 

data to construct a prediction model 8. Data-driven methods can 

be divided into two main categories: machine learning methods 

and statistical learning methods 33. Machine learning methods 

mainly include Support Vector Regression (SVR), Artificial 

Neural Networks (ANN) 24, Bayesian Networks (BN) 2 and so 

on. At present, there are many research studies on RUL 

prediction of lithium-ion batteries based on machine learning. 

Wang et al. 30 proposed an improved anti-noise adaptive 

(ANA)-LSTM algorithm which has higher accuracy compared 

to traditional RNN and LSTM methods. Zhao et al. 48 used a 

combination of eigenvector selection and SVR on establishing 

the relationship between lithium-ion battery capacity and health 

index for more accurate RUL prediction. Ren et al. 19 proposed 

an Auto-CNN-LSTM model, which is able to achieve accurate 

RUL prediction by mining deep hidden information in limited 

data. In practice, many researchers often integrate multiple 

prediction models to predict the RUL of  

a battery in order to effectively address the stochastic nature of 

the prediction results of a single data-driven model and improve 

the robustness of the prediction. Zhao et al. 49 proposed  

a fused neural network framework based on broad learning 

system (BLS) and LSTM for predicting the RUL of lithium 

batteries, and validated the effectiveness and superiority of the 

method on two datasets. In addition, there are some other 

practical and relevant algorithms, such as the BLS-particle 

swarm optimization (PSO) prediction framework 43 or the 

PSO- Gate Recurrent Unit (GRU) 42 prediction method. 

However, these prediction methods based on machine learning 

are considered black-box models. They rely on significant 

amounts of historical data to train the algorithms, with have 

poor interpretability and stability. 

Statistical learning methods mainly include Wiener process 

and various filtering algorithms such as Kalman Filter (KF), 

Particle Filter (PF), etc. The modeling process of the Wiener is 

based on the assumption of the Markov property. While this 

assumption is valid in many real-world cases, it does not always 

hold true 12. Xue et al. 36 developed a RUL prediction method 

for lithium-ion batteries combining Unscented Kalman Filter 

(UKF) and SVR with better prediction accuracy compared to 

the traditional KF and UKF. Zhang et al. 41 used variational 

mode decomposition to decompose the degradation data of 

lithium batteries into trend and residual terms, and integrated 

the PF and Gaussian process regression (GPR) to predict the 

RUL of the batteries. Wang et al. 31 proposed  

a singular filtering (SF)-GPR-LSTM residual capacity 

estimation model for lithium batteries, which can effectively 

evaluate the full life cycle remaining capacity of batteries at 

extremely low temperatures. Zhang et al. 46 proposed a RUL 

prediction method based on Unscented Particle Filter (UPF) and 

utilized the Markov Chain Monte Carlo (MCMC) technique 

after the resampling operation to solve the sample 

impoverishment problem, which is better compared to the 

traditional PF and UPF methods with better performance. 

However, the stochastic filtering approach has some limitations. 

The use of Kalman filters is based on the assumption that both 

process noise and sensor noise are Gaussian distributed 12. PF 

is a more generalized filtering method, but suffers from particle 

degeneracy and scarcity. In addition, the prediction accuracy of 

filter-based methods relies on a priori knowledge of the physical 

behavior; however, domain knowledge is not always available 
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or is too expensive to obtain 9. 

In recent years, similarity-based prediction (SBP) methods 

have gained significant attention. SBP is categorized as a type 

of machine learning method. This prediction method does not 

rely on any prior knowledge about the degradation model and 

only requires a small amount of historical data to accurately 

predict RUL based on similarities between samples. Zhang et al. 

45 proposed a RUL estimation method for mechanical systems 

based on the similarity of phase-space trajectories, which 

searches for the optimal segment in the reference degradation 

trajectories compared with the current degradation trajectories, 

and realizes accurate RUL estimation by calculating the 

similarity. Xia et al. 34 proposed a similarity-based self-encoder 

multiscale ensemble prediction method and validated the 

effectiveness and superiority of the method on the CMAPSS 

dataset. Although these traditional SBP methods have achieved 

some results, they also have some shortcomings. 

1) Traditional SBP methods do not necessitate a large 

amount of degradation data, but they do have fundamental 

requirements regarding the quantity of data. In practice, 

obtaining degradation data for lithium-ion batteries of the same 

type is difficult, and available degradation information is 

limited, posing a significant challenge to accurately predicting 

the RUL of the battery. 

2) The similarity measure based on Euclidean distance is 

commonly utilized in SBP. However, this metric is not 

applicable when the predicted reference sample and the actual 

sample only exhibit identical major degradation trends. 

3) Traditional SBP methods typically offer only point 

estimates of RUL, failing to provide any uncertainty intervals. 

However, uncertainty intervals are crucial for decision-makers 

in real operating conditions, as the information provided by 

point estimates alone is insufficient 35. 

To address the aforementioned challenges, this paper 

presents a novel RUL prediction method for lithium-ion 

batteries. This method leverages data augmentation and 

similarity measures to handle small sample problems. The 

contribution of this paper can be summarized as follows: 

1) By utilizing the single exponential model and Sobol 

sampling, data augmentation can be achieved even under 

conditions of limited samples. The generated degradation 

trajectories can provide data support for achieving accurate 

RUL predictions. 

2) To assess the correlation between various degradation 

trajectories in terms of their overall trend, the Pearson distance 

was selected as the similarity measure between the predicted 

reference trajectory and the actual trajectory. 

3) In this paper, kernel density estimation (KDE) is 

employed to quantify the uncertainty in RUL predictions, 

aiming to minimize the impact of prediction uncertainty on 

decision-making in engineering practice. 

The rest of this paper is organized as follows. Section 2 

provides a concise overview of the battery degradation data 

augmentation method, which is based on an exponential model 

and Sobol sampling. In Section 3, we outline the proposed 

similarity-based RUL prediction method. The experimental 

validation of this method on the NASA lithium-ion battery 

dataset is presented and discussed in Section 4. Lastly, Section 

5 offers concluding remarks for the entire paper. 

2. Data augmentation for similarity based RUL prediction 

A. Problem description 

In real-world working conditions, acquiring a substantial 

volume of condition monitoring (CM) data for the same type of 

Li-ion battery proves challenging due to numerous external 

interferences and internal factors. For example, technological 

advancements have gradually enhanced the reliability of 

batteries, resulting in significantly extended cycle times from 

their operation commencement to failure. Consequently, 

procuring a sizable dataset depicting the complete life cycle 

degradation of identical battery types becomes prohibitively 

expensive 47. In RUL prediction, the problem of lack of 

sufficient run-to-failure degradation data is known as the small 

sample problem. 

In recent years, with the rapid development of artificial 

intelligence (AI), more and more researchers have utilized deep 

learning prediction methods to predict the RUL of lithium-ion 

batteries. However, these methods rely on large amounts of 

degradation data and labeled RULs to train the model and are 

no longer suitable for RUL prediction in small sample situations 

[7,22,40]. 

In this case, the SBP method is a better choice to directly 

measure the similarity between different degradation 

trajectories and achieve accurate RUL prediction by weighted 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 1, 2024 

 

averaging [10,12]. 

The first step in utilizing traditional similarity-based RUL 

prediction methods is to collect diverse CM data to guarantee 

the accuracy of RUL prediction 35. When there is only one 

predicted reference trajectory, the prediction results for RUL 

become highly unstable and uncertain, as they heavily rely on 

the quality of that single trajectory. Even if the reference 

trajectory is divided into multiple segments using a sliding 

window, the instability and uncertainty persist. 

However, in some situations, only one complete run-to-

failure degradation data is even available. For instance, there is 

not a significant amount of historical degradation data for 

lithium-ion batteries that are newly put into the system. As 

batteries generally undergo a complete life-cycle degradation 

experiment prior to being deployed, we have and have only one 

complete run-to-failure degradation data. The aim of this paper 

is to achieve accurate SBP under small sample conditions with 

only one complete run-to-failure degradation data. The 

availability of only one degradation trajectory and the lack of 

multiple reference trajectories for prediction pose a significant 

challenge to the SBP method.  

To address this issue, this paper presents a data 

augmentation method that utilizes a single exponential model 

and Sobol sampling. The proposed method for data 

augmentation only necessitates one complete set of run-to-

failure CM data and the degradation information available for 

the battery under test. 

B. The degradation model of the battery 

The capacity of a lithium-ion battery gradually diminishes as 

the battery ages. When the capacity drops below a certain 

percentage of the standard capacity value, it can be considered 

as battery failure. As a result, researchers typically use capacity 

as the degradation or condition indicator for lithium-ion 

batteries. Essentially, predicting the RUL of a battery entails 

predicting when the battery's capacity will reach the failure 

threshold. 

In practice, researchers often employ the dobule exponential 

model to establish an empirical degradation model for capacity 

[11,15], which is represented by Eq (1). 

𝐶(𝑘) = 𝑎1 ⋅ 𝑒𝑥𝑝( 𝑎2 ⋅ 𝑘) + 𝑎3 ⋅ 𝑒𝑥𝑝( 𝑎4 ⋅ 𝑘)  (1) 

where 𝐶(𝑘) denotes the capacity of the 𝑘 -th charging cycle and 

𝑎1, 𝑎2, 𝑎3, 𝑎4  are the parameters of the dobule-exponential 

model. 

However, when fitting incomplete run-to-failure capacity 

data using a double-exponential model, the range of values for 

the model parameters fluctuates significantly as the available 

degradation information continues to change. This variability is 

not conducive to data augmentation. 

In order to solve this problem, the single exponential model 

is chosen as the empirical degradation model of battery capacity 

in this paper. This model has only two unknown parameters and 

demonstrates high stability even as the available degradation 

information changes. Moreover, the single exponential model 

can also accurately estimate the change rule of battery capacity. 

The expression for the single exponential empirical 

degradation model of battery capacity is shown in Eq (2). 

𝐶(𝑘) = 𝑎 ⋅ 𝑒𝑥𝑝( 𝑏 ⋅ 𝑘)   (2) 

Assume there is a complete run-to-failure capacity data 𝐶 =

(𝐶1, 𝐶2, ⋯ , 𝐶𝑁) , and not run-to-failure capacity data 𝑄 =

(𝑄1, 𝑄2, ⋯ , 𝑄𝑡𝑠), 𝑡𝑠 < 𝑁 . The Levenberg-Marquardt algorithm 

was used to estimate the unknown parameters of the empirical 

degradation models of 𝐶 and 𝑄. The 95% confidence intervals 

for the four sets of unknown parameters were obtained as shown 

below. 

𝐴 = {(𝑎𝐶

𝑚𝑖𝑛𝐶

𝑚𝑎𝑥𝐶

𝑚𝑖𝑛𝐶

𝑚𝑎𝑥
𝑄

𝑚𝑖𝑛𝑄

𝑚𝑎𝑥𝑄

𝑚𝑖𝑛𝑄
𝑚𝑎𝑥

   (3) 

where 𝑎𝐶
𝑚𝑖𝑛  denotes the lower bound of parameter 𝑎  in the 

empirical model of degradation data 𝐶, 𝑏𝐶
𝑚𝑖𝑛 denotes the upper 

bound of parameter 𝑏  in the empirical model of degradation 

data 𝑄, and so on. 

C. data augmentation based on Sobol sampling 

In recent years, Generative Adversarial Networks (GAN) have 

become the most commonly used technique for augmenting 

degradation data. GANs aim to enrich the data in a data-driven 

manner and generate realistic degradation trajectories, thereby 

enhancing the performance of RUL prediction methods [5,46]. 

However, to ensure the credibility of the generated data, 

GAN methods typically require more than two historical 

degradation trajectories as references [5,46]. In practice, it is 

possible that only one complete run-to-failure degradation 

trajectory can be collected. In such cases, the GAN method is 
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no longer applicable. 

Random sampling algorithms are quasi-random and limited 

to one cycle. However, once this period is exceeded, they are 

repeated and cease to be mutually independent random numbers. 

In contrast to random sampling methods, Sobol sequence 

sampling methods focus on generating uniform distributions in 

probability space, by which local clustering can be avoided 29. 

Sobol samples are created by rapidly converging to a uniformly 

distributed (with a low bias) sequence of deterministic numbers, 

which outperforms sampling such as Latin hypercube sampling 

(LHS), which is a method of sampling other low biased 

sequences [20,28]. The necessary computational procedure for 

Sobol's method of generating quasi-random sequences in one 

dimension is shown below 1. 

We aim to generate a sequence {𝑥1, 𝑥2, ⋯ },0 < 𝑥𝑖 < 1 with 

small differences in the unit interval. At first, we need a set of 

direction numbers 𝑣𝑖, and each 𝑣𝑖 is a binary fraction. 

To obtain 𝑣𝑖 , we need to choose a polynomial with 

coefficients chosen from {0,1}, which is a primitive polynomial 

in the domain 𝑍2. A primitive polynomial of degree 𝑑 in 𝑍2 can 

be constructed 

𝑃 ≡ 𝑥𝑑 + 𝑚1𝑥𝑑−1 + ⋯ + 𝑚𝑑−1𝑥 + 1   (4) 

where (𝑚1, 𝑚2, ⋯ ) is the coefficients of 𝑃, and each 𝑚𝑖 is 0 or 

1.We use the coefficients of 𝑃 to define a recursive equation to 

compute 𝑣𝑖 as follows. 

𝑣1 = 𝑚1𝑣𝑖−1 ⊕ 𝑚2𝑣𝑖−2 ⊕ ⋯ ⊕ 𝑚𝑑−1𝑣𝑖−𝑑−1 ⊕ 𝑣𝑖−𝑑 ⊕ [
𝑣𝑖−𝑑

2𝑑
]     (5) 

where ⊕  denotes a bit-by-bit exclusive-or operation, and the 

last term is 𝑣𝑖−𝑑 shifted right 𝑑 places. 

Finally, we can generate the sequence 𝑥1, 𝑥2, ⋯  by the 

following equation. 

𝑥𝑛 = 𝑏1𝑣1 ⊕ 𝑏2𝑣2 ⊕ 𝑏3𝑣3 ⊕   (6) 

where [𝑏1, 𝑏2, 𝑏3, ⋯ ] is the binary representation of 𝑛. 

The steps of the proposed capacity degradation data 

augmentation technique based on single exponential model and 

Sobol sampling are shown in Algorithm 1. 

 

 

 

 

 

 

 

3. III. Similarity based RUL prediction and uncertainty 

management 

In this section, this paper presents a framework for predicting 

RUL of lithium-ion batteries. The framework is based on data 

augmentation and similarity measures specifically designed for 

small-sample cases. Fig. 1 illustrates the flowchart of the 

framework. The proposed prediction framework is divided into 

two main parts. 

The left side of the dashed line represents the data 

preparation stage, which addresses the issue of limited predicted 

reference trajectories in small samples through the use of data 

augmentation techniques. 

On the right side of the dashed line lies the RUL prediction 

stage. Here, the process begins by calculating the similarity 

measure between the generated degradation trajectories and the 

actual degradation trajectories using the Pearson distance. 

Subsequently, utilizing this similarity information, point 

estimates for RUL are computed. Finally, to overcome the 

limitation of traditional SBP methods in providing uncertainty 

results, the KDE method is employed to effectively manage the 

uncertainty associated with RUL prediction. 

The rest of this section discusses in detail the specific 

process of predicting RUL based on SBP.
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Fig. 1. The proposed RUL prediction based on data augmentation and similarity measure.

A. Similarity evaluation 

Evaluating the similarity between different degradation 

trajectories is a crucial process for SBP, as it plays a pivotal role 

in inferring RUL and providing predictive reference examples. 

In traditional similarity evaluation methods, many 

researchers usually use different distance metrics to measure the 

similarity between degradation trajectories. The basic distance 

metrics include Euclidean distance 32, Manhattan distance 12, 

Cosine distance 40, and so on. Meanwhile, to simultaneously 

account for the impacts of distance and correlation on similarity, 

Wang et al. 28 utilized complex invariant distance (CID) as an 

alternative to Euclidean distance-based similarity calculation. 

In addition to distance-based similarity representations, 

there are many statistical techniques to compute the similarity 

between degradation trajectories, such as dynamic time warping 

(DTW) 18. DTW is suitable for calculating the similarity 

between trajectories of different lengths and is not applicable in 

the prediction scenario discussed in this paper. 

In this paper, the degradation trajectory of the simulation 

augmentation in the small-sample case provides an approximate 

estimation of the capacity's degradation trend. However, it does 

not capture the noise and capacity regeneration phenomena that 

occur during the capacity change process. To effectively 

measure the correlation between these degradation trends, the 

Pearson distance was chosen as a means to calculate the 

similarity between degradation trajectories using the expression 

shown below. 

𝑑𝑝 = 1 − 𝜌𝑋,𝑌 = 1 −
𝐸[(𝑋−�̄�)(𝑌−�̄�)]

𝜎𝑋𝜎𝑌
   (7) 

where 𝑋 and 𝑌 represent two different degradation trajectories, 

�̄�  and �̄�  denote the mean of 𝑋  and 𝑌 , and 𝜎𝑋, 𝜎𝑌  denote the 

standard deviation of 𝑋 and 𝑌. 

B. RUL point estimation 

Based on the similarity measures between the degradation 

trajectories, we can predict the RUL of the battery by point 

estimation. Assuming that the current moment is 𝑡𝑠  and the 

failure moment of the battery is 𝑡𝑓, then the RUL can be defined 

as the following equation. 

𝑅𝑈𝐿 = 𝑡𝑓 − 𝑡𝑠    (8) 

It is assumed that there are M   predicted reference 

degradation trajectories for the same type of battery. The 

estimated RUL (ERL) for different reference trajectories is 

defined as 𝐸𝑅𝐿𝑖 , 𝑖 = 1,2, ⋯ , 𝑀 . The point estimate of the 

battery RUL can be obtained by weighting the predictions based 

on similarity measures, as defined in Eq (9). 

𝑟𝑢�̂� = ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑘 ⋅ 𝐸𝑅𝐿𝑘
𝑀
𝑘=1     (9) 

where 𝑤𝑒𝑖𝑔ℎ𝑡𝑘  represents the weight of different predicted 

reference degradation trajectories. The equation for calculating 

the weight based on Pearson distance is shown below. 

𝑤𝑒𝑖𝑔ℎ𝑡𝑘 =
𝑠𝑝,𝑘

∑ 𝑠𝑝,𝑖
𝑀
𝑖=1

=

1

𝑑𝑝,𝑘

∑
1

𝑑𝑝,𝑖

𝑀∑
𝑖=1

    (10) 

where 
1

𝑑𝑝,𝑘
 is the reciprocal of the Pearson distance for the 𝑘 -th 

reference trajectory. 

C. Uncertainty management 

Traditional similarity-based prediction methods solely provide 

a deterministic RUL without assessing the uncertainty of the 

prediction. However, in practical applications, it is crucial for 

decision-makers to assess the uncertainty of RUL predictions 

(uncertainty management). Decision-makers rely on this 

information to understand the accuracy and reliability of the 

predictions [10]. Additionally, uncertainty management serves 

as the foundation for implementing proactive risk defense and 
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intelligent operations and maintenance strategies for devices. 

This paper utilizes the KDE technique to merge the weights 

and ERLs of individual reference degradation trajectories. This 

approach enables the management of uncertainty in battery 

RUL prediction results. KDE is a nonparametric estimation 

method that can estimate the RUL distribution without making 

any assumptions [33]. 

It is assumed that 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛)  are independent 

identically distributed samples from a specific distribution with 

an unknown probability density function 𝑓(⋅) . The kernel 

density method was used to estimate the density as follows. 

𝑓̑(𝑥) =
1

𝑁ℎ
∑ 𝐾(

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1    (11) 

where 𝐾(⋅) is the kernel function, ℎ is the bandwidth, and 𝑛 is 

the size of sample. 

In this paper, we choose the most widely used Gaussian 

kernel function as the kernel function of KDE, whose 

expression is shown in Eq (12). 

𝐾(
𝑥−𝑥𝑖

ℎ
) =

1

√2𝜋
𝑒𝑥𝑝( −

(𝑥−𝑥𝑖)2

2ℎ2 )   (12) 

For a more concise representation, 𝑤𝑒𝑖𝑔ℎ𝑡𝑘  is denoted as 

𝑤𝑘  and 𝐸𝑅𝐿𝑘  is denoted as 𝑟𝑘 . Taking 𝑤𝑘  and 𝑟𝑘  of different 

degradation trajectories into the KDE, the density of the RUL 

of the tested trajectory is estimated as follows. 

𝑓̑(𝑟𝑢) = ∑
𝑤𝑖

√2𝜋ℎ
𝑒𝑥𝑝( −

(𝑟𝑢−𝑟𝑘)2

2ℎ2 )𝑀
𝑖=1   (13) 

With the probability density function, uncertainty 

management of SBP methods can be realized by calculating the 

cumulative distribution function of RUL, determining the 

confidence interval boundaries, and then determining the 

confidence intervals of the predicted RUL at a given confidence 

level. 

4. Experiment and Discussion 

A. Data description 

The lithium-ion battery dataset provided by the NASA Ames 

Prediction Center of Excellence (PCoE) was used to validate the 

effectiveness of the proposed RUL prediction method 3. The 

battery operates at an ambient temperature of 24°C 21. 

Repeated charge/discharge cycles can accelerate the aging of 

lithium-ion batteries. The capacity resulting from these cycles 

serves as a suitable indicator to describe the degradation process 

of lithium-ion batteries. 

In this paper, the capacity degradation data of B0005 and 

B0006 batteries are selected to validate the similarity-based 

RUL prediction method proposed in this paper. A lithium-ion 

battery is considered to have failed when 30% of its rated 

capacity has decayed, and the failure threshold of the capacity 

is 1.4Ah. The capacity degradation data of B0005 and B0006 

batteries are shown in Fig. 2. 

 

Fig. 2. Degradation data of B0005 and B0006 batteries. 

In the experimental session, B0005 and B0006 lithium-ion 

batteries are used as the objects to be predicted, respectively, 

and it is assumed that the complete run-to-failure capacity data 

of the other battery is available. 

Furthermore, experiments were conducted on the RW-09 

and RW-10 Li-ion battery datasets, also obtained from the PCoE, 

in order to further validate the proposed methodology. The 

failure thresholds for both RW-09 and RW-10 batteries are also 

set at 1.4 Ah 27. The capacity degradation data of RW-09 and 

RW-10 batteries can be seen in Fig. 3. 

 

Fig. 3. Degradation data of RW-09 and RW-10 batteries. 

We utilize the proposed method for RUL prediction and 

verify the validity. To further illustrate the effectiveness of the 
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proposed method, we compare it with four prediction methods: 

Euclidean similarity-based method (ESB), cosine similarity-

based method (CSB), Manhattan similarity-based method 

(MSB), and complex invariant similarity-based method (CISB). 

These methods replace the Pearson distance with other distance 

measures when calculating the similarity, and the rest of the 

parameters are consistent with the methods proposed in this 

paper. 

In addition, we compare the performance of the proposed 

method with the sliding window-based similarity prediction 

method (denoted as SW). The basic idea of the SW method to 

realize RUL prediction is to divide the degradation trajectory 

into many segments using a sliding window and find the 

trajectory segment that is most similar to the actual degradation 

trajectory as the ERL of that trajectory, and the rest of the 

operation is similar to that of the traditional similarity-based 

RUL prediction. In this paper, the sliding window size of SW is 

set to 20 and the Pearson distance is used to calculate the 

similarity between trajectories. 

Root Mean Square Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and Mean Absolute Error (MAE) 

were chosen as the evaluation metrics to evaluate the 

performance of various RUL prediction methods, and the 

formulas for RMSE, MAPE, and MAE are shown below. 

𝑅𝑀𝑆𝐸𝑘 = √
1

𝑅
∑ (𝑟𝑢𝑙𝑖 − 𝑟𝑢𝑙𝑖

�̂�)𝑅
𝑖=1    (14) 

𝑀𝐴𝑃𝐸𝑘 =
1

𝑅
∑ |

𝑟𝑢𝑙𝑖−𝑟𝑢𝑙𝑖
�̂�

𝑟𝑢𝑙𝑖
|𝑅

𝑖=1     (15) 

𝑀𝐴𝐸𝑘 =
1

𝑅
∑ |𝑟𝑢𝑙𝑖 − 𝑟𝑢𝑙𝑖

�̂�|𝑅
𝑖=1     (16) 

where 𝑟𝑢𝑙𝑖  denotes the true RUL under the 𝑖  -th prediction 

starting point (SP), 𝑟𝑢𝑙𝑖
�̂� denotes the result of the RUL predicted 

by the 𝑘 -th model at this moment, and 𝑅 is the total number of 

predicted points. The smaller the values of RMSE, MAE, and 

MAPE, the closer the predicted RUL is to the true RUL, 

indicating better prediction performance. 

B. RUL prediction for B0006 

In this case, the RUL of the battery is predicted from the nine 

moments of [40:5:80] for the B0006 lithium-ion battery to 

verify the effectiveness of the proposed method. It is important 

to note that the available degradation information of the battery 

being tested varies depending on the starting point for prediction. 

First, due to the insufficiency of capacity degradation 

sample data, we utilize the proposed Sobol sampling method to 

realize the augmentation of degradation data. 

Based on the B0005 battery capacity degradation data, the 

Levenberg-Marquardt algorithm was utilized to estimate the 

upper and lower bounds of the corresponding single exponential 

model parameters 𝑎𝐶  and 𝑏𝐶  as (1.931, 1.954) and (-0.002662, 

-0.002529), respectively. 

When the prediction starting point is different, the available 

degradation information of the battery to be tested is different, 

leading to differences in the results of the degradation model 

parameter estimation. Therefore, the single exponential 

degradation model of available capacity data is established at 

each prediction starting point. The parameters of the 

degradation model under different prediction starting points are 

shown in Table 1. 

Table 1. - Parameter estimation results for B0006 available 

degradation data under different prediction starting points. 

SP 𝒂𝑸 𝒃𝑸 

40 (2.010, 2.055) (-0.003670, -0.00269) 

45 (2.013, 2.055) (-0.003751, -0.002928) 

50 (2.011, 2.056) (-0.003648, -0.002871) 

55 (2.013, 2.054) (-0.003620, -0.002964) 

60 (2.019, 2.059) (-0.003738, -0.003154) 

65 (2.023, 2.062) (-0.003801, -0.003266) 

70 (2.023, 2.063) (-0.003900, -0.003389) 

75 (2.024, 2.063) (-0.003966, -0.003489) 

80 (2.044, 2.082) (-0.004213, -0.003784) 

The upper and lower limits of the parameters of the single 

exponential degradation model are determined under different 

prediction starting points, the number of simulation samples 𝑛 

is set to 20, and Algorithm 1 is utilized to generate reference 

degradation trajectories to provide data support for similarity-

based RUL prediction. As an example, the capacity degradation 

trajectories generated using Algorithm 1 when the prediction 

starting point is 80 cycles are shown in Fig. 4. 

In Fig. 4, the solid blue line represents the real B0006 

degradation trajectory and the dashed lines represent the 

degradation trajectories generated by Algorithm 1. As can be 

seen in Fig. 4, the generated degradation trajectories are able to 

roughly encompass the overall degradation trend of the B0006 

battery, but lack accurate estimates of noise or capacity 

regeneration phenomena. However, the focus of the similarity-

based prediction method is on predicting the approximate range 
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of RUL for different prediction starting points, rather than 

accurately predicting the details of capacity degradation. 

The degradation trajectories generated by using Sobol 

sampling are regarded as training trajectories, and their Pearson 

distances to the tested trajectories are calculated at different 

prediction starting points, and then the estimated RUL is 

calculated by using Eqs. (9)-(10). In addition, the RULs of the 

B0005 battery are simultaneously estimated by the prediction 

methods of ESB, CSB, MSB, CISB, and the sliding window to 

obtain the comparison results between the RULs estimated by 

the multiple methods and the true RUL comparison results are 

shown in Fig. 5. As depicted in Fig. 5, the RUL prediction 

results obtained from the proposed method show a closer 

alignment to the true RUL across various prediction starting 

points. Additionally, the RUL prediction curves exhibit minimal 

fluctuation, thus substantiating the robustness of the proposed 

approach. 

Accordingly, the performance metrics of each prediction 

method are shown in Table 2. To further illustrate the validity of 

the proposed method, this paper also employs two kinds of 

generalized data-driven methods - GPR 16 and SVR 39- to 

predict the RUL of lithium-ion batteries. 

For SVR, the kernel function is set as linear. And the kernel 

function of GPR is squared-exponential. In this case, a data-

driven model is utilized to establish a mapping between the 

degradation data of B0005 and the available degradation 

information of B0006, which ultimately leads to the prediction 

of RUL. The prediction results of GPR and SVR are also 

recorded in Table 2. 

 

Fig. 4. The generated data by the single exponential model 

when the starting point is 80 cycles. 

 

Fig. 5. RUL prediction results for B0006. 

Table 2. - RUL prediction results of multiple methods with 

different prediction starting points for B0006. Lowest values are 

presented in bold. 

Method RMSE MAPE MAE 

Our method 1.3501 0.0218 1.0688 

ESB 3.3457 0.0533 2.8177 

CSB 3.1256 0.0658 2.5610 

MSB 3.4925 0.0569 2.9873 

CISB 2.8436 0.0582 2.5479 

SW 27.0108 0.5820 26.4174 

GPR 35.0619 0.7062 34.2222 

SVR 34.0539 0.6974 33.4444 

As can be seen from Fig. 5, the RUL predicted by our 

method is closer to the true RUL compared to all other methods 

under different prediction starting points. In addition, as shown 

in Table 2, our method has the minimum value under all three 

evaluation metrics, indicating the validity and superiority of the 

method. Compared with ESB, CSB, MSB, CISB, SW, GPR and 

SVR, the MAPE of our method was reduced by 59.10%, 

66.87%, 61.69%, 62.54%, 96.25%, 96.91% and 96.87%, 

respectively. 

After obtaining the weights and estimated RUL values of 

each degradation trajectory, we utilize KDE to manage the 

uncertainty of the prediction results, providing a reliable basis 

for implementing maintenance decisions and risk management. 

As an example, the probability density distribution of the RUL 

obtained from the KDE method estimation with a prediction 

starting point of 40 cycle is shown in Fig. 6. 
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Fig. 6. Probability density function of the estimated RUL for 

B0006 when the starting point is 40 cycles. 

 

Fig. 7. The predicted RUL and confidence interval of our 

method for B0006. 

The 50% (i.e., 25%-75%) confidence intervals for the RUL 

prediction results of the proposed method are shown in Fig. 7. 

As can be seen from Fig. 7, the actual RULs are located in 

the predicted confidence intervals, which proves the better 

reliability and robustness of the proposed method compared to 

the traditional method of predicting the RULs using only point 

estimation. 

C. RUL prediction for B0005 

In this case, we assume that the degradation trajectory of the 

B0006 Li-ion battery is available, and predict the RUL of the 

B0005 battery by the proposed RUL prediction framework at 

different prediction starting points. 

Before RUL prediction, it is necessary to estimate the range 

of values for the parameters of the capacity degradation model 

for data augmentation. 95% confidence intervals for the values 

of parameters 𝑎𝐶   and 𝑏𝐶   for the B0006 battery capacity are 

(2.003, 2.030) and (-0.00334, -0.003181). The range of 

parameter values for the degradation model of the available 

capacity of the B0005 battery under different prediction starting 

points is shown in Table 3.  

Table 3. - Parameter estimation results for B0005 available 

degradation data under different prediction starting points. 

SP 𝒂𝑸 𝒃𝑸 

40 (1.829, 1.850) (-0.0008647, -0.0003694) 

45 (1.831, 1.853) (-0.001026, -0.0005686) 

50 (1.831, 1.853) (-0.001036, -0.0006242) 

55 (1.833, 1.855) (-0.001129, -0.0007586) 

60 (1.836, 1.859) (-0.001248, -0.0008874) 

65 (1.837, 1.863) (-0.001330, -0.0009539) 

70 (1.837, 1.866) (-0.001470, -0.001077) 

75 (1.844, 1.875) (-0.001654, -0.001262) 

80 (1.879, 1.910) (-0.002045, -0.001678) 

When the prediction starting point is 60 cycles, the 

degradation trajectory generated using the data augmentation 

method proposed in this paper is shown in Fig. 8. 

 

Fig. 8. The generated data by the single exponential model 

when the starting point is 60 cycles. 

 

Fig. 9. RUL prediction results for B0005. 
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Table 4. - RUL prediction results of multiple methods with 

different prediction starting points for B0005. Lowest values are 

presented in bold. 

Method RMSE MAPE MAE 

Our method 2.5030 0.0322 1.9973 

ESB 4.7024 0.0599 3.7394 

CSB 9.2069 0.1325 8.4659 

MSB 5.5732 0.0733 4.5712 

CISB 3.2573 0.0408 2.6751 

SW 21.7186 0.3344 20.8777 

GPR 18.2513 0.2375 16 

SVR 31.0658 0.5708 30.5108 

In Fig. 8, the solid blue line is the real capacity degradation 

trajectory of the B0005 battery, and the dashed lines are the 

generated degradation trajectories. From the figure, it can be 

seen that the generated degradation trajectory cannot simulate 

the actual degradation of capacity finely, but it can cover the 

actual capacity degradation trend well. 

The generated data is used as the prediction reference 

trajectories to predict the RUL of the B0005 battery utilizing the 

similarity-based prediction method. The RUL results predicted 

by each model when the prediction starting point is different are 

shown in Fig. 9. Accordingly, the performance metrics of each 

prediction method are shown in Table 4. 

In Fig. 9, the black curve represents the true RUL and the 

red curve represents the RUL predicted by the proposed method. 

As can be seen from Fig. 9, the RUL predicted by the method 

proposed in this paper is closer to the real RUL than the 

comparison method, and the trend is more stable with 

insignificant fluctuations. In addition, as shown in Table 6, the 

prediction of RUL using the proposed method has the lowest 

RMSE, MAPE and MAE, which proves the validity and 

superiority of the method. Taking RMSE as an example, the 

proposed method reduces ESB, CSB, MSB, CISB, SW, GPR 

and SVR by 46.77%, 72.81%, 55.09%, 23.18%, 88.47%, 86.29% 

and 91.94% respectively. 

After obtaining the weights and ERLs of each predicted 

reference trajectory under different prediction starting points, 

the KDE method was utilized to quantify the uncertainty of the 

RUL prediction. As an example, the probability density function 

of the RUL prediction obtained using KDE estimation with a 

prediction starting point of 60 cycles is shown in Fig. 10. 

The 50% confidence intervals for the RUL predictions are 

shown in Fig. 11. From Fig. 11, it can be seen that the prediction 

intervals of the proposed method can cover the true RUL for any 

prediction starting point, which proves the reliability and 

robustness of the proposed method. 

 

Fig. 10. Probability density function of the estimated RUL for 

B0005 when the starting point is 60 cycles. 

 

Fig. 11. The predicted RUL and confidence interval of our 

method for B0005. 

D. RUL prediction for RW-10 

In this case, we utilize the capacity data of RW-09 to predict the 

RUL of RW-10.  

Assuming a starting point of 20 cycles, we obtained 

confidence intervals for the degradation data parameters of RW-

09 and a portion of RW-10 using Eq. (2), respectively: 

𝐴 = {(1.99,2.016), (−0.01252, −0.01153), 

(2.146,2.193), (−0.01848, −0.01652)}              (17) 

In this case, we utilize 𝐸𝑟 to describe the prediction error, 

which is defined as shown below.  

𝐸𝑟𝑘 = |𝑟𝑢𝑙𝑖 − 𝑟𝑢𝑙𝑖
𝑘 |̂    (18) 

According to Eq. (17) and Algorithm 1, 20 degradation 
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trajectories are generated as shown in Fig. 12.  

 

Fig. 12. The generated data by the single exponential model 

when the starting point is 20 cycles. 

In Fig. 12, the solid blue line represents the actual capacity 

degradation trajectory of the RW-10 battery, while the dashed 

lines represent the generated degradation trajectories. When the 

predicted starting point is 20 cycles, the true RUL is 9 cycles 27. 

The RUL of the RW-10 battery was predicted using various 

methods, and the corresponding predicted results are presented 

in Table 5. 

Table 5. - RUL prediction results of multiple methods for RW-

10. 

Method Predicted RUL Er  

Our method 6.9385 2.0165 

ESB 6.7756 2.2244 

CSB 4.8463 4.1537 

MSB 6.9040 2.0960 

CISB 6.6566 2.4345 

SW 17.8528 8.8528 

GPR 5 4 

SVR 14 5 

Table 5 reveals that the proposed method demonstrates the 

highest prediction accuracy. When compared to ESB, CSB, 

MSB, CISB, SW, GPR, and SVR, the proposed method 

showcases reduced 𝐸𝑟  values of 9.35%, 51.45%, 3.79%, 

17.17%, 77.22%, 49.59%, and 59.67%, respectively.  

The KDE algorithm is used to estimate the probability 

density function of the RUL for RW-10 when the starting point 

of 20 cycles. The resulting probability density function is shown 

in Fig.13. Additionally, the proposed method predicts a 

confidence interval for the RUL of [3.4424, 10.174] at a 

confidence level of 0.5. These predicted intervals for RUL 

enable the development of maintenance strategies to ensure the 

reliability of lithium-ion batteries. 

 

Fig. 13. Probability density function of the estimated RUL for 

RW-10 when the starting point is 20 cycles. 

5. Conclusion 

In this paper, we propose a method for predicting RUL of 

lithium-ion batteries using data augmentation and similarity 

measures. The proposed method integrates the techniques of 

Sobol sampling, Pearson distance and kernel density estimation, 

which ultimately achieves accurate RUL prediction. Our 

method addresses the challenges posed by inaccurate 

predictions due to a shortage of run-to-failure degradation data 

in traditional SBP models under small sample conditions. 

Moreover, the proposed RUL prediction method is validated on 

two datasets, proving the effectiveness of the method. 

The experimental results show that the method proposed in 

this paper has higher accuracy compared with ESB, CSB, MSB, 

CISB, SW, GPR and SVR, and is able to realize accurate RUL 

prediction under small sample conditions. 

There are some limitations of our proposed method: 

1) The data augmentation method proposed in this paper 

lacks the ability to accurately capture the noise and capacity 

regeneration phenomenon that occurs during the degradation of 

lithium-ion batteries. 

2) The prediction interval of the RUL prediction is wide. 

Considering these limitations, future research should 

prioritize the generation of more realistic degradation 

trajectories and the development of a more robust approach to 

managing uncertainty in SBP.
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